- . DAAS LApTES
s ' %/.Q,

JN =G/
Lo 20 =T

A e, -
CHANIILELROUWGONAHYPQ%UBE l' I (r 53557

Randall Brouwer and Prithviraj Baner jee

Computer Systems Group
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1101 W. Springfield Ave.

Urbana, IL 61801
(217) 333-6564

ABSTRACT ,
In this paper we present a new parallel simulated annealing algorithm for channel routing on

a P processor hypercube. The basic idea used is to partition a set of tracks equally among proces-
sors in the hypercube. In parallei, P/2 pairs of processors perform displacements and exchanges of
nets between tracks, compute the changes in cost functions, and accept moves using a parallel
annealing criteria. Through the use of a unique distributed data structure, we are able to minimize
message traffic and add versatility and efficiency in a parallel routing tool. The algorithm has been
implemented and is being tested on some of the popular channel problems from the literature.

(BASA-CR-1805€3) A PABALLEL ALGCRITHM FCR N87-26518

CHLANKEL BCUIING CK A HBYPERCUEEF (Illimois

Usiv.) 12 p Avail: NI1S EC 2AQL/MF AOQ1

CSCL (9B Unclas
G3/61 0069620

Acknowledgement: This research was supported in part by the National Aeronautics and Space Administration under
contract NASA NAG 1-613. Please address all correspondence to second author.

1. Introduction

Over the past few years, much research has been directed toward ways to apply simulated
annealing, a multivariate optimization technique [1], to many difficult problems in computer aided
design. Some of these include logic minimization [2], cell placement [3, 4], global routing [5], and
detailed routing [6]. These research efforts have demonstrated that near-optimal results can be
achieved for NP-hard problems using simulated annealing. The ‘majdx"tcirawback to the use of

"simulated annealing is the excessively long run times required to achieve good results. Some recent
work has applied simulated annealing to parallel architectures to reduce the long run times.

Extremely good results have been shown for parallel standard cell placement algorithms [7,8,9,10]

and parallel global routing algorithms [11].

The problem of channel routing deals with a rectangular wiring area called a channel with
pins on the top and bottom edges of the channel, and a collection of nets which are sets of pins _that
must be interconnected. Nets are routed with horizontal wire segments on one layer and vertical
wire segments on another. Connections between the two layers are made through via holes. The
objective of a channel router is to interconnect all the nets so as to minimize various criteria such as
the area of the channel and the number of vias used. Several algorithms for channel routing exist
in the literature that apply heuristics. Since they are greedy algorithms, they have the possibility

of getting stuck at local minima [12,13,14,15,16].

_Recently Leong, Wong, and Liu [6] have proposed a uniprocessor simulated annealing channel
routing algorithm: however, long run times are required to achieve good routings. The algorithm
they employed requires the detection of cycles in the vertical constraint graph: however, it is not
feasible to detect cycles in a parallel processing environment. Furthermore, their algorithm is
unable to handle switch-box rout'mg.. obstacle avoidance, and unrestricted doglegging, all of which

are important in any good routing tool.

In this paper, we present a new parallel simulated annealing algorithm for channel routing.
Parallelizing a uniprocessor algorithm should provide faster run times. Additionally, we hope to
achieve better convergence due to the parallel state changes as was experimentally observed in a
parallel algorithm for cell placement [10]. The algorithm we propose is also more versatile, as it
can easily be extended to include switch-box routing, unrestricted doglegging, and obstacle
avoidance. Unlike the simulated annealing channel router mentioned earliet, our algorithm permits
overlap between distinct nets in early stages of the annealing process, allowing more freedom for

getting out of local minima and finding a global minimum.

2. Description

2.1. Parallel Architecture

The algorithm we present in this paper is targeted for implementatiori on the Intel iPSC
Hypercube Computer. A hypercube computer is a message passing architecture consisting of P = 2¢
processor nodes in which each node is directly connected to d other nodes. Communication between

the processor nodes is restricted to passing variable sized messages between adjacent nodes. Figure

1 shows a three-dimensional hypercube.

2.2, Channel Partitioning and Processor Mapping

To partition the data uniformly among all processors of the hypercube, adjacent tracks of the
channel are grouped together and assigned to a single processor. We define the processor domain
PD; as the set of adjacent tracks along with all nets currently assigned to the tracks of the channel
over which processor P; is given control. Consecutive domains are assigned to adjacent processor
nodes in the hypercube topology to provide a balance in communication distance. Figure 2 shows a
channel partitioning for a hypercube with dimension d=3. This partitioning arrangement allows

for net displacement to adjacent domains and to other domains separated by large vertical distances

in the channel. At high temperatures in the annealing process, the algorithm can allow moves
across both small and large distances in the hypercube. At lower temperatures, moves along

dimensions that correspond to large vertical distances are inhibited.

2.3. Moves

In the restricted doglegging version currently implemented, four move types are provided for
permuting the current state of the channel into a new state. Given that P; and P; are connected in

dimension & of the hypercube, the moves are as follows:

Move 1: P; and P; independently displace a net from one track in their respective domains to
another track in the same domain.
Move 2: P; displaces net from track in PD; to PD, of P;.
Move 3: P; and P, independently exchange track assignments of two nets in their respective
~domains. -

Move 4: P; exchanges net from PD; with net from PD; of P,.

Sequences of these exchange and displace moves are sufficient for all permutations of the channel

state. These moves are chosen randomly, with relative frequencies of 4:4:1:1 respectively.

2.4. Algorithm

The annealing algorithm we use is outlined in Figure 3. The value of inner_loop_count is
specified to be 100 times the number of nets in the given channel routing problem. During each
iteration of the inner loop, each of the d dimensions of the hypercube is sequenced through in

which each of the P/2 processor pairs in dimension k attempt one of the four types of moves in

parallel.

2.5. Annealing Schedule

The annealing temperature is adjusted based on the following schedule:

Tygw = ALPHA(T) X Torp

in which the function ALPHA (T) ranges from 0.8 for large values of T to 0.95 for small values of

T. This schedule allows more permutations at low annealing temperatﬁrés to make many small

improvements.

To determine the initial temperature, 100 random moves with a positive cost change are
evaluated without accepting any of them. The average cost change ACOST 4vg for those moves is

then calculated, and we solve for Ty as follows:

ACOST pvg
T == in(0.8)

2.6. Cost Function

The cost for a given state of the channel is a function of the amount of overlap between
unique nets(OL), the length of the nets(NL), the width of the channel(WC), and the fraction of the
track not occupied by nets(FU). For each move, the cost change incurred if the move was accepted

is calculated as follows and used to determine move acceptance.

ACOST = ax(AOL) + BX(ANL) + yxX(ACW) + 8x(AFU)

Since move costs a.re calculated in parallel, the calculated cost change is only an estimate because it
does not account for interactions on the channel state by other processor pairs accepting moves.
Jones and Banerjee [10] have shown, experimentally. that this property of parallel simulated
annealing improves the overall convergence for the cell placement problem. We are expecting to see

the same benefits in the channel router problem.

2.7. Distributed Data Structure

Since a hypercube computer is & message passing local memory parallel architecture, there is
no shared memory, and one cannot assume the use of a central data structure for storing all of the
channel state informatiop. We therefore propose a distributed data structure among processors in
the hypercube such that each processor only stores the information that it needs for performing its
computations. The data structures we propose help minimize the amount of message passing
required, reduce the memory space used for storing the necessary data, and take advantage of the
fact that the cost of a message is almost independent of the message size. For each net n in PD; of
pi the positions of the horizontal and vertical segments of net n, along with the positions of all
other vertical segments of nets also occupying the columns of net n must be stored. All of this
data is necessary for calculating the expected overlap, channel width, and net length changes for a

given move. The data sjructures used for storing the track and column data for one processor node

is shown in Figure 4.
2.8. Net Location Updating

To ensure straightforward and accurate updating of net positions in the new channel state. the
position data for those nets is passed from node to node along a Hamiltonian cycle through every
node of the hypercube. A Hamiltonian cycle in a graph is defined as a cycle in a graph which
traverses every node of the graph exactly once. A Hamiltonian cycle in a 3~dimensional hypercube
is shown in bold lines in Figure 1. Each node updates the data it has and then forwards the mes-

sage to the next node along the cycle. All updating completes within P time steps.

3. Implementation

We have implemented the above algorithm using 3500 lines of C code using an Intel Hyper-
cube Simulator(Version 3.0) running on a Sun 3/50 workstation operating under Sun Unix 4.2.

The initial version of our program was debugged one week ago. We are presently carrying out tests

of our parallel algorithm on various test cases. Figure 5 shows an example solution of a problem

found in the literature [13].

Figure 6 shows a plot of the annealing channel cost as a function of temperature. We will be
reporting the results of our algorithm for‘many of the other conventional channel routing test cases
in the final paper at the conference, and we plan to implement this version on an actual hypercube

and report on the performance (ie. speedup. etc.) at the conference.

4. Conclusions

In this paper we have proposed a new parallel algorithm for simulated annealing channel
routing for implementation on a hypercube computer. By the use of a novel distributed data struc-
ture and partitioning of the channel, we have a versatile algorithm for channel routing that is

easily extensible to switch-box routing and obstacle avoidance routing.

[1]
(2]
[3]
[4]
(s
6]
[7]

[8]
(9]

[10]
[11]
[12]
[13]
[14]
(15]

[16]

REFERENCES

S. Kirkpatrick. C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”
Science, vol. 220, pp. 671-680, May 1983.

J. Lam and J. M. Delosme, “Logic Minimization Using Simulated Annealing,”" Proc. IEEE Int.
Conf. Computer-Aided Design (ICCAD-86), pp. 348-351, Nov. 1986.

C. Sechen and A. S. Vincentelli, “TimberWolf3.2: A New Standard Cell Placement and
Global Routing Package,” Proc. 23rd Design Awtomation Conf., pp. 432-439, Jun. 1986.

L. K. Grover, “A New Simulated Annealing Algorithm for Standard Cell Placement,” Proc.
Int. Conf. on Computer-Aided Design (ICCAD-86). pp. 378-380, Nov. 1986.

M. P. Vecchi and S. Kirkpatrick, “Global Wiring by Simulated Annealing,” IEEE
Transactions on Computer-Aided Design, vol. CAD-2, No. 4, pp. 215-222, October 1983.

H. W. Leong, D. F. Wong, and C. L. Liu, “A Simulated Annealing Channel Router,” Proc.
22nd Design Awtornation Conf.. pp. 226-228, June 1985.

A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, “A Parallel Simulated Annealing
Algorithm for the Placement of Macro-Cells,” Proc. IEEE Int. Conf. Computer-Aided Design
(ICCAD-86), pp. 30-33, Nov. 1986.

R. A. Rutenbar and S. A. Kravitz, “Layout by Annealing in a Parallel Environment,” Proc.
IEEE Int. Conf. on Computer Design (ICCD-86), pp. 434-437, Oct. 1986.

P. Banerjee and M. Jones, “A Parallel Simulated Annealing for Standard Cell Placement on a

Hypercube Computer,” Proc. IEEE Int. Conf. Computer-Aided Design (ICCAD-86). Nov.
1986.

M. Jones and P. Banerjee, “Performance of a Parallel Algorithm for Standard Cell Placement
on the Intel Hypercube,” Proc. 24th Design Awtomation Conf., June 1987.

M. J. Chung and K. K. Rao, “Parallel Simulated Annealing for Partitioning and Routing,”
Proc. IEEE Int. Conf. on Computer Design (ICCD-86), pp. 238-242, Oct. 1986.

A. Hashimoto and J. Stevens, “Wire Routing by Optimizing Channel Assignment,” Proc. 8th
Design Automation Conf., pp.214-224, June 1971.

T. Yoshimura and E. S. Kuh, “Efficient Algorithms for Channel Routing,” IEEE Trans.
Computer-Aided Design, vol. CAD-1, pp. 25-25, Jan. 1982.

R. L. Rivest and C. M. Fidducia, “A Greedy Channel Router,” Proc. 19th Design Awtomation
Conf., pp. 418-424, June 1982.

. D. Deutsch, “A Dogleg Channel Router,” Proc. 13th Design Automation, pp. 425-433, June

1976.

M. Burstein and R. Pelavin, “Hierarchical Channel Router,” Proc. 20th Design Automation
Conf.. pp. 591-597, June 1983.

Figure 1. 3-Dimensional Hypercube Showing a Hamiltonian Cycle

CHANNEL PROCESSORS

Figure 2. Channel Map onto Hypercube of 3 Dimensions

STEP 1. Perform track assignments to P processors.

STEP 2. Determine initial annealing temperature.

STEP 3. While "Stopping criteria” : temperature < € not reached
STEP 4. Generate new temperature according to annealing schedule
STEP 5. For inner_loop_count = 1 to USER_PARAMETER

STEP 6. For each dimension k = O to log(P)-1 do

STEP 7. Randomly select P/2 moves (exchange or displacement of nets) in parallel among pairs of
PEs connected in dimension k.

STEP 8. Evaluate change in cost for each move between pairs of PEs mdepéndently.
STEP 9. Accept/reject moves based on exponential function independently.

STEP 10. Broadcast new net locations to all other processors using Hamiltonian cycle.
STEP 11. ENDFOR; ENDFOR; ENDWHILE;

Figure 3. Parallel Algorithm for Channel Routing

QRIGINAL! PAGE ¥
OF BOOR QUALLTY]

Track Number Track Number
Next Track Pointer N T Pome . —" °°*° [Next Track Poimir ||

Net Struct Pointes || I NetStruct Pointer]| |L Net Struct Pointer ||
Net Nember Net Number Net Number
Lsft Endpoint Left Endpolat Lalt Endpoint
Right Endpeint Right Endpoint Right Bndpoint
Net Struct Pointer Net Struct Pointas Net Struct Pointer
Net Number Net Numbes " Net Number
Left Endpoint Lt Endpoint Left Endpoint
Right Endpoint Night Endpoint Right Endpoint
Net Strwct Pointar Nat Struct Polater Net Struct Pointer
Net Number lNll. Net Nomber
Laft Endpoint Laft Endpolat
Right Endpoint Right Endpoiat
Net Struet Pointer Net Stract Pointer

b ’ ha

(a)

[Cotema nwmber [Coloma Nembes]| Colums Number ||
Colema Stract Pointar Caluma Streci Polnter se Column Struct Pointas
Column Hlement Pointer Columa Elsment Pointer |[Colsmn Elemaent Pointer
Net Number Net Number Net Number
Segment Top Eadpoint Segment Top Endpoint Segment Top E-;dpolut
Segment Bottom Endpoint Segmant Bottom Endpoint Segment Bottom Endpoint
Column Hlemant Pointer Column Etsmaent Pointa Column Elamant Pointer
Net Number Net Number Net Number
Segment Top Endpoint Segment Top Endpoint Segment Top Endpoint
Segment B Endpoint Segment Bottem Endpol Segment Bottom Endpoint
Column Element Pointer Column Element Polater Colemn Elsment Pointet
hat ! y

Net Number Net Number
Segment Top Endpoint Segmant Top Endpoint
Segment Bottom Bndpeint Segment Bottom Badpoint
Columa Element Pointar Column Elsment Pointer
I fa
Net Number
Segment ‘fop Endpoint
Colsma Element Pointer

hat

(b)

Figure 4. (a) Track Data Structure (b) Column Data Structure

10

11

cecccalucocsast

evwobleosncdossdessn

eswmdessgoane

csovelosace

geevcegeocces

Figure 5. Example Routing Solution

| | |
100 1000 10000
Annealing Temperature

I
10

40000 —
30000
20000 —
10000 -

Cost

0
0.1

Figure 6. Temperature vs. Cost

